
Efficient Higher-Order Derivatives of the
Hypergeometric Function

I. Charpentier1, C. Dal Cappello2, and J. Utke3

1 Laboratoire de Physique et Mécanique des Matériaux, UMR CNRS 7554, Ile du Saulcy,
57045 Metz Cedex 1, France; isabelle.charpentier@univ-metz.fr

2 Laboratoire de Physique Moléculaire et des Collisions, 1, Bd Arago, 57078 Metz Cedex 3,
France; cappello@univ-metz.fr

3 Argonne National Laboratory, Mathematics and Computer Science Division, 9700 South
Cass Avenue, Argonne, Illinois 60439,USA; utke@mcs.anl.gov

Summary. Various physics applications involve the computation of the standard hypergeo-
metric function 2F1 and its derivatives. Because it is not an intrinsic in the common program-
ming languages, automatic differentiation tools will either differentiate through the code that
computes 2F1 if that code is available or require the user to provide hand-written derivative
code. We present options for the derivative computation in the context of an ionization prob-
lems and compare the approach implemented in the Diamant library to standard methods.

Key words: higher-order derivatives, hypergeometric function, Bell polynomials, Diamant
library

1 Introduction

The Gauss hypergeometric function 2F1(a,b,c;z) frequently arises in physics problems such
as ionization; see Sec. 3. It is a solution of the hypergeometric differential equation

z(1− z)
d2!(z)
dz2

+[c− (a+b+1)z]
d!(z)
dz

−ab!(z) = 0 (1)

and, by using the rising factorial (x)n, can be expressed as a series

2F1(a,b,c;z) =
"

#
n=0

(a)n(b)n
(c)n

zn

n!
with (x)n =

(x+n−1)!
(x−1)! (2)

The convergence of the series depends on (a,b,c) and z and is discussed in detail in [1]. For
k = 1, · · · ,n, differentiating (2) with respect to z yields

2F1(k)(a,b,c;z) =
$ k2F1(a,b,c;z)

$ zk
=

(a)k(b)k
(c)k

2F1(a+k,b+k,c+k;z) (3)

The ensuing n computationally expensive evaluations of 2F1 at different arguments may be
avoided by deriving a recurrence formula for the Taylor coefficients from (1). In automatic

2 I. Charpentier, C. Dal Cappello, and J. Utke

differentiation (AD) this approach has been the basis for computing higher-order Taylor coef-
ficients for intrinsic functions such as ex; see [9]. This paper presents an efficient and simple
method for computing higher-order derivatives of the hypergeometric function. The remainder
of this section covers the derivation of the recurrence formula. In Sec. 2 we discuss a two-level
operator overloading technique based on the approach in the Diamant library and compare run
times. Section 3 covers the application of our approach to an ionization problem. Conclusions
are given in Sec. 4.

1.1 Low-Order Derivatives

For simplicity we rewrite (1) as

%(z)!(2)(z)+& (z)!(1)(z)− '!(z) = 0 (4)

by setting %(z) = z(1− z), & (z) = [c− (a+ b+ 1)z], ' = ab, and from now on we assume
%(z) "= 0. Furthermore we assume z = z(x) to be n times differentiable with respect to x and
write

v= v(0)(x) = !(z(x)) (5)

Differentiating (5) with respect to x and omitting the dependence on x and z, we have

v(1) = !(1)z(1) and v(2) = !(2)(z(1))2+!(1)z(2)

Assuming z(1) "= 0, we obtain

!(1) =
v(1)

z(1)
and !(2) =

v(2) −
(
v(1)
z(1)

)
z(2)

(z(1))2

which we substitute into (4) to write

%
v(2) − (v(1)/z(1))z(2)

(z(1))2
+&

v(1)

z(1)
− 'v(0) = 0

Since we assumed %(z) "= 0, one deduces

v(0) = !

v(1) = !(1)z(1)

v(2) =
'v(0)(z(1))3−&v(1)(z(1))2+%v(1)z(2)

%z(1)
(6)

The derivatives of v can be computed by evaluating the 2F1 function only twice rather than
n times. Higher-order derivatives can be computed by overloading (6). This approach is dis-
cussed in Sec. 2.2. When z(1) = 0, differentiating (5) yields

v(0) = !, v(1) = 0, v(2) = !(1)z(2)

v(3) = !(3)(z(1))3+3!(2)z(2)z(1) +!(1)z(3) = !(1)z(3) (7)

v(4) = · · · = 3!(2)(z(2))2+!(1)z(4)

If z(2) "= 0, one can again find expressions for !(1) and !(2), substitute into (4), and write v(4)
as

v(4) =
3'v(z(2))3−3&v(2)(z(2))2+%v(2)z(4)

%z(2)
(8)

Efficient Higher-Order Derivatives of the Hypergeometric Function 3

1.2 Higher-Order Formulas

General higher-order terms v(n) are derived from Faá di Bruno’s formula, which can be ex-
pressed in terms of Bell polynomials Bn,k(z(1), · · · ,z(n−k+1)) (see also [2])

v(n) = (! ◦ z)(n) =
n
#
k=1

!(k)Bn,k(z(1), · · · ,z(n−k+1)) (9)

where

Bn,k(z(1), · · · ,z(n−k+1)) =#
n!

j1! · · · jn−k+1!

(
z(1)

1!

) j1
· · ·

(
z(n−k+1)

(n−k+1)!

) jn−k+1

and the sum is over all partitions of n into k nonnegative parts such that

j1+ j2+ · · · jn−k+1 = k and j1+2 j2+ · · ·(n−k+1) jn−k+1 = n (10)

Further details may be found in [14]. One easily verifies that (9) correctly expresses the equa-
tions in (7).
Theorem 1. Assuming z(l) = 0 for 1 ≤ l < m and z(m) "= 0, one may simplify equation (9)
written at order 2m as

v(2m) = !(1)z(2m) +b2m!(2)(z(m))2 (11)

where b2m =
(2m)!
2!(m!)2

. Moreover, one may write

!(2) =
v(2m)−!(1)z(2m)

b2m(z(m))2

Proof. One notices that, for k = 1, the monomial B2m,1

B2m,1(z(1), · · · ,z(2m)) =
(2m)!
1!

(
z(2m)

(2m)!

)1

= z(2m)

multiplied by !(1) yields the first term of (11). For k= 2, the partition jl = 0 (∀l "=m), jm = 2,
is the only one that satisfies (10). One deduces the second term of (11):

!(2)B2m,2(z(1), · · · ,z(2m−1)) = !(2) (2m)!
2!

(
z(m)

(m)!

)2

= b2m!(2)(z(m))2 (12)

Other polynomials B2m,k(z(1), · · · ,z(2m−k+1)) (k > 2) vanish because they have at least one
nonzero exponent jl (1≤ l < m) for which the respective basis z(l) was assumed to be 0. &'
Theorem 2. Assuming z(l) = 0 for 1≤ l <m and z(m) "= 0, then the first 2m derivatives of the
compound function v satisfy

v(n) = 0, ∀n= 1, · · · ,m−1 (13)
v(n) = !(1)z(n), ∀n= m, · · · ,2m−1 (14)

v(2m) =
b2m'v(z(m))3−b2m&v(m)(z(m))2+%v(m)z(2m)

%z(m) (15)

Proof. We determine a recurrence over m for the first 2m− 4 derivatives of v and the Bell
formulas as we did in Theorem 1 for the last ones. Following formula (14), we deduce

!(1) = v(m)/z(m) (16)

The use of (16) and (12) in the ODE equation (4) leads to (15). &'

4 I. Charpentier, C. Dal Cappello, and J. Utke

2 Taylor Coefficient Propagation

Sections 1.1 and 1.2 show that the derivatives v(n) of the v(x) = !(z(x)) =2 F1(z(x)) can be
obtained from the first two derivatives !(1) and !(2). Now we need to provide an explicit
formula for the Taylor coefficients that then can be implemented in an overloading library.

2.1 Series Computations

When the function of interest is the solution of an ODE, the usual approach starts with the
Taylor series

v(x(t)) = v0+v1t+v2t2+v3t3+v4t4+ . . .

and its derivatives

v(1)(x) = v1+2v2t+3v3t2+4v4t3+ . . . = ṽ1+ ṽ2t+ ṽ3t2+ ṽ4t3+ . . .

v(2)(x) = ṽ2+2ṽ3t+3ṽ4t2+ . . .

for v. We can also write the respective series for z,z(1), . . . and substitute them into the ODE,
in our case into (4). Repeating the previous assumptions z1 "= 0 and %(z) = z(z−1) "= 0, we
can apply this approach to the 2F1 and eventually arrive4 at

#
i=0

(zṽ2z̃1)it i − #
i=0

(i
#
j=0

z j(zṽ2z̃1)i− j
)
ti =

ab #
i=0

(i
#
j=0

v j(z̃31)i− j
)
ti−

c #
i=0

(ṽ1z̃21)it i+(a+b+1) #
i=0

(i
#
j=0

z j(ṽ1z̃21)i− j
)
ti

+ #
i=0

(zṽ1z̃2)it i− #
i=0

(i
#
j=0

z j(zṽ1z̃2)i− j
)
ti

(17)

We can now match coefficients for the ti. For t0 the match yields

ṽ2 =
abv0 z̃31−cṽ1 z̃21+(a+b+1)z0 ṽ1z̃21+ z0ṽ1z̃2− z20ṽ1z̃2

z0z̃1− z20z̃1
(18)

The occurrence of ṽ1 in the right-hand side is the effect of the second-order equation. We need
to compute that explicitly to start the recursion. As shown in Theorem 2, no more than two
evaluations of the 2F1 function are required. Taylor coefficients vi+2 (i= 1, . . .) are computed
from the vi+1. The main drawbacks are the complexity of the recursion obtained from (17) and
the fact that, aside from convolutions on the Taylor coefficients, everything is specific to 2F1
as our particular intrinsic of interest. In the following section we will look at a more generic
alternative.

2.2 Overloading Strategies

For high-order differentiation tools, the relevant choices are AD02 for Fortran [15], Adol-C
for C and C++ [10], and Rapsodia for both Fortran and C++ [7]. All of them rely on operator

4 We left out some tedious intermediate steps; the (psqt)r denote #rj=0(p j+sqi− j+t).

Efficient Higher-Order Derivatives of the Hypergeometric Function 5

overloading as the vehicle of attaching derivative computations to the arithmetic operators and
intrinsic functions provided by the programming language.

The 2F1 function may be overloaded by using a Taylor coefficient recursion obtained from
formula (18), intermediate computations such as z0ṽ1z̃21 being overloaded also. This two-level
overloading using any of the three tools mentioned above can, depending on the application
context, be inefficient. To illustrate the point, we consider the differentiation of the product
(: (x,y) (→ r = x ∗ y. According to the Leibniz rule this requires (k+ 1) multiplications at
order k. Because the general-purpose AD tools need to handle any sequence of intrinsics, they
will often compute for each intrinsic all Taylor coefficients up to a user-defined but perhaps
compile-time fixed order K ≥ k. Consequently the number of multiplications for (then rises
to (K+1)(K+2)/2.

The nested convolutions in (18) imply at least an effort of O(K3) for the computation
of all the derivatives up to order K. Because of the complexity of (18) it is difficult to arrive
at a more precise estimate, in particular when one considers the mix of intrinsic operations
occurring in the recurrence and optimizing the computations by storing intermediate values.

A particular application scenario of interest here is the asymptotic numerical method
(ANM), see [8, 6, 5], in which the derivative order rises with the ANM iteration count and
at each iteration just the kth order derivatives have to be computed. The AD library Diamant
(an acronym for Différentiation automatique de laMéthode asymptotique numérique Typée)
is geared toward ANM with the goal of being as efficient as hand-coded ANM. It differs
from the standard AD tools such as AD02 because it permits computing Taylor coefficients
for just the particular desired order k at a time, not requiring the computation of lower orders
(l = 1, · · · ,k−1) or higher ones (m = k+1, · · · ,K). Of course, for many intrinsics the com-
putation of the kth-order Taylor coefficient of the result requires knowledge of all coefficients
up to order k of the arguments. Rather than recomputing them, however, Diamant stores the
highest coefficients at each ANM iteration so that they are available at the following iteration.
Storing the coefficients up to order k− 1 and subsequently computing order k is not unlike
the approach of running Adol-C in forward mode once up to order k− 1 while taping (that
is, storing the coefficients) and following with the reverse mode for order k, which reads the
stored coefficients. Adol-C, however, has no means to incrementally grow the order k on the
tape in successive runs. As a consequence of the approach in Diamant the recurrence formu-
las for some intrinsics need to be modified. For instance, the typical recurrence for division
(w= u/v) makes use of the Taylor coefficients wk of the result w. Such implementation details
are discussed in the Diamant manual.

The Diamant approach can be applied to the efficient computation of Taylor coefficients
of the hypergeometric function. In Table 1 we compare three AD strategies D0 – D2. All
are implemented within Diamant. D0 implements a naive approach in which the recurrence
formulas are evaluated by means of a loop over all orders k up to a statically fixed bound K.
D1 performs the differentiation with a loop up to only the current order k of differentiation.
Compared to D0 this avoids the computation of the unused high-order differentiations (m =
k+ 1, · · · ,K). Therefore D1 is comparable to the Adol-C implementation, although without
the need for a tape.5 A direct comparison with Adol-C was not possible, however, because
Adol-C does not support the complex arithmetic used in 2F1. The factor of improvement over
D0 can be observed to be roughly three; see Table 1. D2 is the implementation specialized for
the ANM. As discussed above, the differentiation is performed only at order k. Because we
removed the loop over the order, we can expect a drop of a factor of K in the computational
effort compared to the other versions. The run times give in Table 1 clearly show that the D2

5 The tapeless version of Adol-C currently supports only first-order computations.

6 I. Charpentier, C. Dal Cappello, and J. Utke

Table 1. Runtime comparison of the computation of 2F1 derivatives at order k

k D0 D1 D2
1 0.276 0.276 0.276
4 0.788 0.700 0.636
6 1.544 1.164 0.912
8 2.820 1.848 1.236
12 8.097 4.164 2.032
16 17.925 8.189 3.008
24 57.936 23.313 5.428
32 131.632 50.883 8.565

specialization for ANM yields substantial benefits. The results also agree with the expected
complexity drop for D2.

3 The Ionization Application

The fully differential cross section (FDCS) on helium depends on the solid angles)s,)1,
and)2 for the scattered electron and the two ejected electrons and on the energies E1 and E2
of the ejected electrons. Assuming a unique interaction between the target and the incoming
electron, one computes this FDCS as

$ 5*
$)s$)1$)2$E1$E2

=
k1k2ks
ki

|M|2 (19)

where ki, ks, k1, and k2 denote, respectively, the momenta of incident, scattered, first ejected,
and second ejected electrons. The matrix element M is a 9-dimensional integral

M =
1
2+

∫
,∗
f (r1,r2)eiks .r0V,i(r1,r2)eiki.r0dr0dr1dr2 (20)

where V = −2r−10 + |r0 − r1|−1 + |r0 − r2| is the Coulomb interaction between the pro-
jectile and the helium atom, r0 is the distance between the incident electron and the nu-
cleus, and r1 and r2 are the distances between one of the helium electrons and its nucleus.
The wavefunctions ,i and , f are the solutions of the Schrödinger equation for the he-
lium atom. No exact formulas exist for ,i and , f . The well-known Bethe transformation,
eik.ak−2 = 4+−1

∫
eik.r|r−a|−1dr, allows for the integration on r0. Thus, the computation of

(20) needs a six-dimensional integral only.
On the one hand, the bound state wavefunction ,i may be approximated, under the first

Born approximation, by means of a Hylleraas-type wavefunction. As an example, let us con-
sider the GRN wavefunction involving an increasing number N of parameters

!GRN(r1,r2,r12) = #
i, j,k≥0

ci jk(ri1r
j
2r
k
12+ r j1r

i
2r
k
12)r

k
12 (21)

where coefficients ci jk were determined from the solution of a minimization problem. Nonzero
coefficients are indicated in Table 2. On the other hand, the best approximation for the final
state, f is that of [3], which satisfies exact asymptotic boundary collisions. The two numerical
approaches available to tackle an accurate Hylleraas wavefunction are either the use of three

Efficient Higher-Order Derivatives of the Hypergeometric Function 7

Table 2. Nonzero ci jk and their respective order k appearing in GRN for various N

N
ci jk 3 5 9 14 k
c000 × × × × 3
c200 × × × × 5
c220 × × × 7
c300 × × × 3
c320 × × 8
c400 × × 7
c002 × × × 5
c202 × × 7
c222 × 9
c302 × × 8
c402 × × 9
c003 × 6
c223 × 10
c004 × 7

1F1 functions and a six-dimensional numerical quadrature [12] (expensive in computer time)
or one occurrence of the 2F1 function and a two-dimensional quadrature applied to high-order
derivative tensors [3].

The gain in number of integrals has to be paid. The Brauner’s method is based on a term
D = e−ar1e−br2e−cr12/(r1r2r12) whose third-order derivative yields the simple wavefunction
,i(r1,r2) = e−ar1e−br2e−cr12 . This enables the writing of terms ri1r

j
2r
k
12e

−ar1e−br2e−cr12 ap-
pearing when using Brauner’s method as derivatives of D.

3.1 Implementations

For this comparison we use four different implementations of the differentiation of the orig-
inal code P with the 2F1 function. These are compared on the computation of the derivatives
appearing in the GRN functions.
P o: This implementation enables the computation of any mixed derivative of order less than

or equal to six. The differentiation has been fully hand coded for some of the statements,
whereas a few Fortran functions (multiplication, division, and the hypergeometric func-
tion) replicate operator overloading AD. The derivative computation is organized, as in
Diamant, by increasing order of Taylor coefficients; that is, the differentiation is done
first at order 1, then at order 2, and so on. Consequently, the classical recurrence formulas
were split into six derivative functions (one per order) to avoid useless recalculations. The
2F1 derivatives are implemented Faá di Bruno’s formula. Most of this code is, however,
proprietary and used here only for verification and as a basis for run-time comparison.

PR : The original function evaluation code P is overloaded by means of the Rapsodia library.
Rapsodia supports computations with complex numbers in a Fortran program and pro-
vides higher-order derivatives in the standard AD fashion, that is, by propagating all Tay-
lor coefficients up to a given order. The 2F1 function is overloaded by using Faá di Bruno’s
formula up to order 8. Thus PR enables, by means of linear combinations [4] or high-
order tensors [11], the computation of any derivative even beyond the desired order of
10.

8 I. Charpentier, C. Dal Cappello, and J. Utke

PD0 : The original function evaluation code P is overloaded by using Rapsodia, while the 2F1
function is overloaded by using D0,

PD2 : The original function evaluation code P is overloaded by using Rapsodia, while the 2F1
function is overloaded by using D2.

Table 3 shows the run times for GRN with N = 14. Because the derivatives in P o are hand-
coded only up to order six, it cannot compute all coefficients. Nevertheless, we use P o to
perform a fourth-order differentiation with respect to r12, and we overload it using Rapsodia
or Diamant to obtain sixth-order derivatives in r1 and r2 by a linear combination of six di-
rections. This permits the computation of the 10order derivative related to coefficient c223. For
comparison we also show the run times of P when the 2F1 is commented out to indicate the
complexity of computing it.

Table 3. CPU time consumptions for the GRN function

N P without 2F1 P o PR PD2 PD0

14 2.812 × 5.9 4.7 8.4

Numerical results presented in Table 3 prove the efficiency of the Diamant approach.
More precisely, the two-level overloading strategy together with the D2 library is about 25%
less time consuming than the Faá di Bruno formula implementation realized in PR . Physical
results we obtained are in good agreement with an “absolute” experiment [13]. They will be
published in another paper.

While the inspection of the physical results indicates the principal correctness of our im-
plementation, one might still wonder about the effects of the approximation to 2F1 itself upon
which all of the above is built. It would be difficult to compute the actual error, but we can,
for instance, look at the discrepancy between the Taylor coefficients of the original generic
Brauner term from the application and the Taylor coefficients of the manually coded first
derivative. The relative discrepancies are shown in Fig. 1. We observe the pronounced effect

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

1 2 3 4 5 6 7 8 9 10 11 12

A B C

Fig. 1. Maximum relative discrepancy in either the real or the imaginary part of Taylor coef-
ficients for the Brauner generic term (case A), for the Brauner generic term without 2F1 (case
B), and just the 2F1 function itself (case C) computed for orders k ∈ [1,12]

of the computations involving the 2F1 approximation while the code without it has an exact
floating-point match even up to order four.

Efficient Higher-Order Derivatives of the Hypergeometric Function 9

4 Conclusions

We investigated the different options for computing derivatives of the hypergeometric func-
tion 2F1(a,b,c;z) and the consequences of vanishing Taylor coefficients of the argument z.
The run-time comparison shows the advantage of the Taylor coefficient recurrence over Faá
di Bruno’s formula. We showed various options for a generic two-level operator overloading
strategy. For the 2F1 function we show how the latter can be used together with either the equa-
tions (13)–(15) or the Taylor coefficients from formula (18) matched for t0. Furthermore we
demonstrated the benefits of the specialization of the AD approach for ANM implemented in
the Diamant library for 2F1 and we also looked at the run time comparison of the computation
of derivatives for an ionization application that involves the 2F1 function.

Acknowledgement. Jean Utke was supported by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy under Contract DE-AC02-06CH11357.

References

1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, New York (1972)

2. Bell, E.: Exponential polynomials. Ann. of Math. 35, 258–277 (1934)
3. Brauner, M., Briggs, J., Klar, H.: Triply-differential cross sections for ionization of hy-
drogen atoms by electrons and positrons. J. Phys. B.: At. Mol. Phys. 22, 2265–2287
(1989)

4. Charpentier, I., Cappello, C.D.: High order cross derivative computation for the differen-
tial cross section of double ionization of helium by electron impact. Tech. Rep. 5546,
INRIA (2005)

5. Charpentier, I., Lejeune, A.: The Diamant library for an efficient automatic differentation
of the asymptotic numerical method. AD08 (submitted)

6. Charpentier, I., Potier-Ferry, M.: Différentiation automatique de la Méthode asymptotique
numérique Typée: l’approche Diamant. Comptes Rendus Mécanique (accepted)

7. Charpentier, I., Utke, J.: Fast higher order derivative tensors. Preprint, Argonne National
Laboratory (2007). Under review at OMS; also available as preprint ANL/MCS-P1463-
1107

8. Cochelin, B., Damil, N., Potier-Ferry, M.: Méthode Asymptotique Numérique. Hermes
Science Publications (2007)

9. Griewank, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic Differ-
entiation. No. 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia (2000)

10. Griewank, A., Juedes, D., Utke, J.: ADOL–C, a package for the automatic differentiation
of algorithms written in C/C++. ACM Trans. Math. Software 22(2), 131–167 (1996)

11. Griewank, A., Utke, J., Walther, A.: Evaluating higher derivative tensors by forward prop-
agation of univariate Taylor series. Mathematics of Computation 69, 1117–1130 (2000)

12. Jones, S., Madison, D.: Single and double ionization of atoms by photons, electrons, and
ions. In: AIP Conference proceedings 697, pp. 70–73 (2003)

13. Lahmam-Bennani, A., Taouil, I., Duguet, A., Lecas, M., Avaldi, L., Berakdar, J.: Origin
of dips and peaks in the absolute fully resolved cross sections for the electron-impact
double ionizaton of helium. Phys. Rev. A. 59(5), 3548–3555 (1999)

10 I. Charpentier, C. Dal Cappello, and J. Utke

14. Noschese, S., Ricci, P.: Differentiation of multivariable composite functions and Bell
polynomials. J. Comput. Anal. Appl. 5(3), 333–340 (2003)

15. Pryce, J., Reid, J.: AD01, a Fortran 90 code for automatic differentiation. Tech.
Rep. RAL-TR-1998-057, Rutherford Appleton Laboratory, Chilton, Oxfordshire, Eng-
land (1998)

The submitted manuscript has been created by UChicago Ar-
gonne, LLC, Operator of Argonne National Laboratory (”Ar-
gonne”). Argonne, a U.S. Department of Energy Office of Sci-
ence laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and oth-
ers acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.

